Suitable Powders for Kinetic MetallizationTM

I7th AeroMat Conference & ExpositionMay 15-18, 2006Ralph M.Tapphorn

Overview

- ► Kinetic MetallizationTM (KM) Process & Equipment
 - Particle Acceleration: Influence of powder size & density
- Powder Properties Suitable for KM Process
 - Particle shape & chemical properties
 - Particle packing theory
 - Particle size distribution (PSD) measurements
 - KM NiCrAlY coating quality vs. PSD

What Is Kinetic MetallizationTM?

Kinetic Metallization Basics

- Impact Consolidation Process
 - Feed-stock: fine powder,
 - Accelerant: inert light gas
- Solid-state Consolidation
 - No melting
 - No liquid chemicals

- KM Sonic Nozzle
 - Friction compensated
 - Low pressure (50 psig)
 - Low gas flow (7.5 SCFM)
- Environmentally Innocuous
 - No hazardous substances

Coating Substrate

Deposition Processes

KM-CDS 2.1 Equipment

Particle Acceleration Influence of Powder Size & Density

Particle Acceleration

- $\blacktriangleright Drag Force = ma = C_D \cdot q \cdot S$
 - \triangleright C_D = drag coeff., S = surface area
 - ► Dynamic Pressure, $q = 1/2 \cdot gas$ density $\cdot V_r^2$
 - ► Relative Velocity, $V_r = V_g V_p$

Solve Particle Velocity V_P vs Nozzle Length (x)

- ► a = dVp/dx = 3/4• C_D $\rho_g/(\rho \cdot D_p) \cdot (V_g V_p)^2/V_p$
- $\triangleright \rho_g = gas density$
- $\triangleright \rho \bullet D_{P}$ is particle density & diameter

Critical Velocity

- Elastic-to-plastic collision threshold
 - Typically 400 600 m/s
 - Increases with increased bulk modulus
 - Decreases with increased particle temperature
- Selection Criteria: Powders Suitable for KM
 - Particle velocities > critical velocity threshold

Sphere **Ellipsoid**

KM - Ni Powder

Powder Properties Suitable for KM

KM Particle Shapes

Atomized Powders (Al, Cu, Ti, NiCrAlY)

Spherical

- Carbonyl Decomposition (Ni, Fe, Co)
 - Spherical
- Hydride-Dehydride (Ti, Zr, Nb, Ta)

► Irregular

- Attrition Milling (WC-Co, Nano-Structured AI)
 - ► Flake

Irregular

Powder Chemistry

- Metallic Powder Purity
 - CP Powders specifies purity of metallic contaminations
 - Alloys specifies alloy chemistry
- Non-Metallic Purity
 - Oxide and nitride content
 - Other surface contaminates (sulfides, etc.)
- Organic Purity
 - Specifies organic material (e.g., lubricant)
 - Relevant to attrition milled powders

Particle Structure

Particle Structure

NiCrAly Particle 20-micrometers

Micro's Courtesy NASA GRC

Powder Packing Theory vs. Experiment

Powder Distribution Requirements

- Ancient History Teaches Fundamentals
 - Building of stone walls
 - Poly-disperse packing theory
 - Greeks Apollonius of Perga

Theoretical Distribution

Measuring Particle Size

NiCrAIY Powder Comparison

NiCrAlY Sample #1 (-635 mesh)

NiCrAlY Sample #2 (-635 mesh)

 $6 \, 0 k V$

SEM Analysis of PSD Micrographs courtesy of NASA GRC INOVAT

PSD Influence on Porosity

NiCrAIY #1 (-635 Mesh)

NiCrAIY #2 (-635 Mesh)

Conclusions KM Powder

Suitable Particle Size

- Strong function of size distribution for high density packing
- Improves deposition efficiency (i,e., upper limit cut-off)
- Dependent on powder density & shape
- Powder manufacturers are evolving processes to accommodate KM
- KM Coating Properties
 - Influenced by chemical purity of powders
 - Mechanical properties vs. coating quality
 - Thermal conditioning of powder (up to 600 F)
 - Improves D_e & reduces plastic deformation flow stresses